Longitudinally Polarised Hadroproduction of Heavy Quarks

Johann Riedl

in collaboration with

Marco Stratmann and Andreas Schäfer

Institut für Theoretische Physik Universität Regensburg

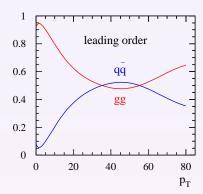
4th October 2008

Outlines

- Introduction and Motivation
- 2 RHIC
- 3 GSI and J-PARC
- Summary and Outlook

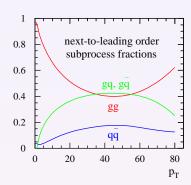
Leading order diagrams

In LO: Heavy quark production proceeds through two subprocesses:


quark-antiquark annihilation,

gluon–gluon fusion,

Relative amounts of these subprocesses for RHIC, $\sqrt{S} = 200$ GeV (CTEQ6):


Heavy quark production at NLO

NLO corrections

- Lots of real and virtual corrections to the LO subprocesses
- ullet Genuine new subprocess of gluon–(anti-)quark fusion: g+q(ar q) o Q+ar Q+q(ar q)

The need for NLO corrections:

- Large corrections in unpolarised case known (Nason et al., Beenakker et al.)
- Reduced dependence on unphysical (renormalisation and factorisation) scales

Determination of Δg

Heavy quark production in longitudinally polarised collisions:

- Sensitivity to Δg through gluon–gluon fusion
- Provides determination of Δg, completely independent of single-inclusive pion/jet production studied so far
- In pQCD: less partonic subprocesses than for pion/jet production
- However, experimentally very challenging
- Δg suggested to be small (e.g., DSSV)
 - ⇒ expect very small spin asymmetries

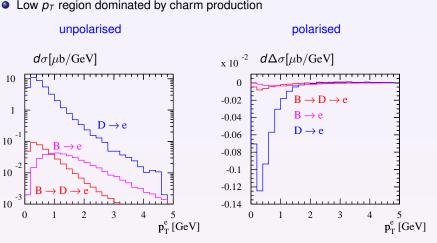
Structure of the calculation

- Complication: one has to match calculation on the parton level with the detection of heavy quarks in experiment
- Heavy quarks are usually detected through their decay products

General structure of a pQCD calculation for HQ cross sections

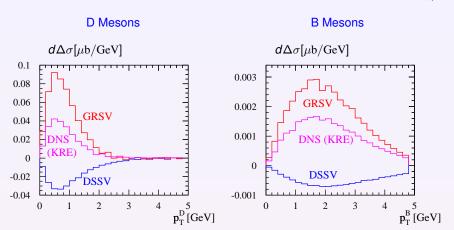
$$pp \stackrel{(1)}{\rightarrow} Q \stackrel{(2)}{\rightarrow} \textit{Mesons} \stackrel{(3)}{\rightarrow} \textit{decay}(e^{\pm}, \mu^{\pm})$$

- (1): calculable in pQCD (making use of the factorisation theorem);
 NLO state of the art:
 - unpolarised: Nason et al.; van Neerven et al.
 - polarised: Bojak, Stratmann; Riedl, Stratmann, Schäfer

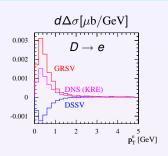

FONLL: + resummation of quasi-collinear logs at NLL (unpol.): Cacciari et al.

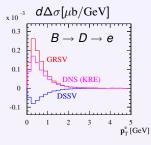
- (2): non-perturbative fragmentation (from data): Cacciari et al.
- (3): leptonic decay spectrum from e⁺e⁻ data (CLEO, BaBar, ...)

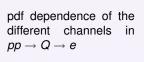
Relevance of different decay channels at RHIC


ALL RESULTS PRELIMINARY, $\mu = m$

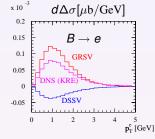
- Single inclusive electron tag
 - $\rightarrow d(\Delta)\sigma$ is a mixture of c's and b's
- Low p_T region dominated by charm production

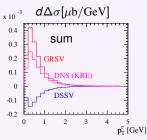

Sensitivity to polarised pdfs (meson level)


ALL RESULTS PRELIMINARY, $\mu = m$

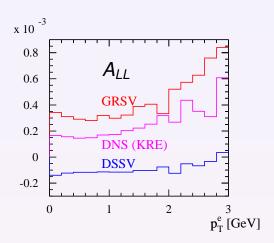


DSSV: very small $\Delta g \rightarrow$ large fraction of $q\bar{q}$ annihilation

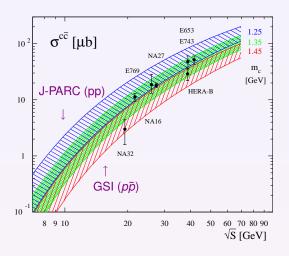

Sensitivity to polarised pdfs (decay electron level)



ALL RESULTS PRELIMINARY, $\mu = m$



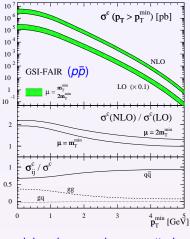
Spin asymmetry A_{LL} (decay electron level)


ALL RESULTS PRELIMINARY, $\mu = m$

- Spin asymmetry very small → experimentally very challenging
- Sensitivity to gluon polarisation

HQ at small \sqrt{S} : GSI and J-PARC projects

Total charm cross section (proton-proton)

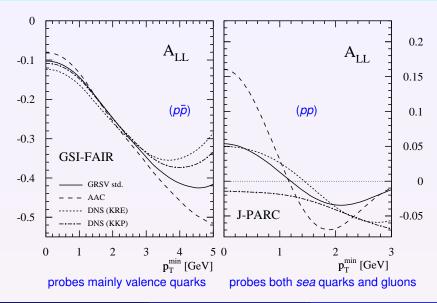



Significant uncertainties:

- charm mass
- choice of (renormalisation and factorisation) scales: here m_c < μ < 2m_c

(Riedl, Stratmann, Schäfer: arXiv:0708.3010 [hep-ph])

GSI and J-PARC: unpolarised



mainly valence-valence scattering

mainly gluon-gluon fusion

probed x-range roughly 0.2 < x < 1

GSI and J-PARC

Summary and Outlook

New flexible MC code available very soon

- ullet allows to study single-inclusive HQ production and $Qar{Q}$ correlations
- includes decay to lepton level

Results can be easily extended to photoproduction

- very relevant: already studied by COMPASS
- part of the physics case for a future EIC